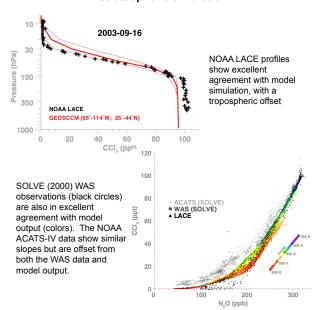
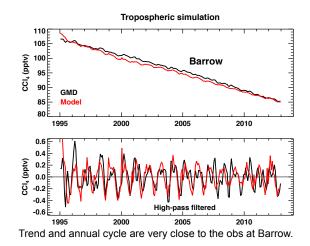
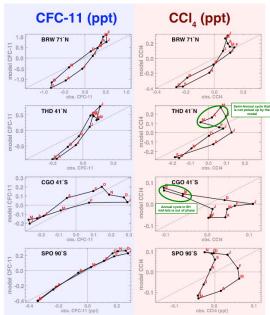


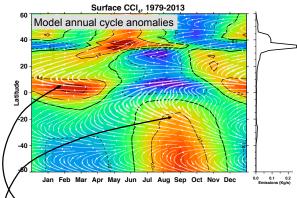
A comparison between observations and modeled carbon tetrachloride (CCI₄)

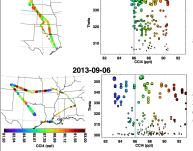

Paul A. Newman¹, Qing Liang², Eric R. Nash³, Eric L. Fleming³, Elliot L. Atlas⁴, Donald R. Blake⁵, James W. Elkins⁶, Geoffrey C. Toon⁷, Fred L. Moore⁶, Geoffrey S. Dutton⁶, Bradley D. Hall⁶


¹NASA/GSFC, Greenbelt, MD; ²USRA GESTAR; ³SSAI, Lanham, MD; ⁴RSMAS/MAC, University of Miami, Miami, FL; ⁵University of California, Irvine, CA; ⁶NOAA ESRL GMD, Boulder CO; ⁷Jet Propulsion Laboratory, Pasadena, CA


Abstract: Carbon tetrachloride (CCl₄ or CTC) is a major ozone depleting substance and greenhouse gas: with an ozone depletion potential (with respect to CFC-11) of 0.72 [WMO, 2015], and a 100-year global warming potential of 1730 [WMO, 2014]. Unfortunately, estimated CCl₄ sources and sinks remain inconsistent with abundance observations. Liang et al. [2014] used surface observations of trends and the inter-hemispheric gradient to estimate a 35 (32–37) year global lifetime and 39 (34–45) Gg yr⁻¹ for CCl₄. The near zero UNEP report emissions and this 39 Gg yr⁻¹ top-down emissions suggest that there is a large unknown source of CCl₄.

Model: Simulations are conducted with the NASA 3-D GEOS Chemistry Climate Model (GEOSCCM) Version 2, which couples the GEOS-5 GCM with a detailed stratospheric chemistry module. A CCM comprehensive evaluation shows that GEOSCCM agrees well with meteorological, transport-related, and chemical diagnostic observations. Of particular importance, GEOSCCM represents the mean atmospheric circulation as demonstrated by its realistic age-of-air, and further, realistic loss and ODS lifetimes.


Stratospheric simulation



The model captures the CFC-11 (left) trend and annual cycle. Aside from Barrow, the CCl4 annual cycle is poorly captured.

- Trade-winds drive transport of CCl₄ from emission region (40°N) to tropics.
- ITCZ lofting of high CCl₄ values is mixed into SH upper troposphere during Jun.—Sep. period, driving an increase of CCl₄ in the SH surface region.

2013-08-19

SEAC4RS

♦ CCI₄ SEAC4RS ave. = 86 ppt ♦ Aug. 2013 Niwot Ridge = 85 ppt ♦ Note that all of 19 Aug. are above about 86 ppt. In contrast, flight of 26 August (not shown) has all observations below 86 ppt. Calibration issue?

Summary

- Stratospheric CCI₄ simulations are in good agreement with observations, indicating that atmospheric lifetime estimates from the model are quite reasonable.
- Tropospheric CCl₄ simulations are fair-to-poor, while CFC-11 and -12 simulations are very good. This implies two possible problems.
- CCI₄ emission patterns are poor
- Ocean and soil sinks/sources are poorly known.
- SEAC4RS data are suggestive of possible CCl₄ emissions in North America.